Plan projection, execution, and learning for mobile robot control

نویسنده

  • Thorsten Belker
چکیده

Most state-of-the-art hybrid control systems for mobile robots are decomposed into different layers. While the deliberation layer reasons about the actions required for the robot in order to achieve a given goal, the behavioral layer is designed to enable the robot to quickly react to unforeseen events. This decomposition guarantees a safe operation even in the presence of unforeseen and dynamic obstacles and enables the robot to cope with situations it was not explicitly programmed for. The layered design, however, also leaves us with the problem of plan execution. The problem of plan execution is the problem of arbitrating between the deliberationand the behavioral layer. Abstract symbolic actions have to be translated into streams of local control commands. Simultaneously, execution failures have to be handled on an appropriate level of abstraction. It is now widely accepted that plan execution should form a third layer of a hybrid robot control system. The resulting layered architectures are called three-tiered architectures, or 3T architectures for short. Although many high level programming frameworks have been proposed to support the implementation of the intermediate layer, there is no generally accepted algorithmic basis for plan execution in three-tiered architectures. In this thesis, we propose to base plan execution on plan projection and learning and present a general framework for the self-supervised improvement of plan execution. This framework has been implemented in Appeal, an Architecture for Plan Projection, Execution And Learning, which extends the well known Rhino control system by introducing an execution layer. This thesis contributes to the field of plan-based mobile robot control which investigates the interrelation between planning, reasoning, and learning techniques based on an explicit representation of the robot’s intended course of action, a plan. In McDermott’s terminology, a plan is that part of a robot control program, which the robot cannot only execute, but also reason about and manipulate. According to that broad view, a plan may serve many purposes in a robot control system like reasoning about future behavior, the revision of intended activities, or learning. In this thesis, plan-based control is applied to the self-supervised improvement of mobile robot plan execution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plan Projection under the APPEAL Robot Control Architecture

The paper presents APPEAL, a three-layer mobile robot control Architecture for Projection-based Planning, Execution and Learning, with a focus on its execution layer. Besides task decomposition and failure recovery, it supports the projection of navigation plans based on learned models of navigation actions. Plan projection is applied to detect opportunities for improving the robot’s navigation...

متن کامل

Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network

Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...

متن کامل

Soccer Goalkeeper Task Modeling and Analysis by Petri Nets

In a robotic soccer team, goalkeeper is an important challenging role, which has different characteristics from the other teammates. This paper proposes a new learning-based behavior model for a soccer goalkeeper robot by using Petri nets. The model focuses on modeling and analyzing, both qualitatively and quantitatively, for the goalkeeper role so that we have a model-based knowledge of the ta...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Natural Communication with Mobile Robots

We describe an implemented system which mediates between an un-modiied reactive mobile robot architecture and domain-restricted natural language. We introduce reactive-odometric plans and demonstrate their use in plan recognition, fault-tolerant plan execution, and learning to associate human terms with locations in the environment which are perceptually unremarkable to the robot. The communica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004